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Abstract
Numbers are crucial for various real-world do-
mains such as finance, economics, and science.
Thus, understanding and reasoning with num-
bers are essential skills for language models
to solve different tasks. Various benchmarks
have assessed the numerical reasoning abilities
of language models and revealed their limita-
tions. However, these benchmarks are limited
to specific numerical aspects. In this paper, we
propose a hierarchical taxonomy for numerical
reasoning skills. It comprises more than ten
reasoning types across four levels: representa-
tion, number sense, manipulation, and complex
reasoning. We conduct a comprehensive evalu-
ation of state-of-the-art models across all rea-
soning types to identify reasoning challenges
specific to model types. Therefore, we develop
a diverse set of numerical probes employing a
semi-automated approach. We focus on the tab-
ular Natural Language Inference (TNLI) task as
a case study and measure models’ performance
shifts. While no single model excels in all
reasoning types, FlanT5 (few-/zero-shot) and
GPT3.5 (few-shot) demonstrate strong overall
numerical reasoning skills compared to other
models based on our probing framework.

1 Introduction

Numerical data is ubiquitous in the real-world.
Many applications in domains such as finance, eco-
nomics and science require understanding and rea-
soning with numbers. In recent years, benchmarks
were introduced to study language models’ numer-
ical reasoning skills (Zhang et al., 2020; Wallace
et al., 2019). However, these datasets mostly con-
centrate on few, specific numerical reasoning types
(e.g. scales (Zhang et al., 2020)). Limitations of
language models’ numerical abilities, as discussed
in prior research, include tokenization and represen-
tation of numbers in text (Thawani et al., 2021b),
hallucination (Ji et al., 2023; Chen et al., 2023;
Ye et al., 2023), and generalizability/robustness
issues (Razeghi et al., 2022; Geva et al., 2020).

Hulk
Directed by Ang Lee
Release date June 20, 2003
Running time 138 minutes
Budget $137 million
Box office $245.4 million

H1: Hulk was released on 20th June, 2003. (E)
Date: Hulk was released on 20-06-2003. (E)
Date Flip: Hulk was released on 12-08-2009. (E)

H2: The movie has a length of 138 minutes. (E)
Appr: The movie has a length of about 150 minutes. (C)

H3: The movie can be watched in about two hours. (E)
Num: The movie can be watched in about 2 hours. (E)
Num Flip: The movie can be watched in about 3 hours.
(C)

Arith: Hulk brought in $108.4 million profit. (E)
Arith Flip: Hulk brought in $120.9 million profit. (C)

Table 1: Base hypotheses (H1, H2, H3) and (flipped)
probes for heterogeneous numbers (i.e. date), apprimation,
numeracy, and arithmetic. Labelled as Entail or Contradict.

Successful numerical reasoning requires a com-
bination of skillsets: understanding representa-
tion of numbers (Thawani et al., 2021a,b) and
their meaning in a given context (Loukas et al.,
2022), applying operations (Geva et al., 2020; Pa-
tel et al., 2021), and integrating factual and com-
monsense numerical knowledge to solve numerical
problems (Lin et al., 2020; Park et al., 2022). For
example, classifying the hypotheses “The movie
can be watched in about 2 (or ‘two’) hours.” from
Table 1 requires understanding that both “2” and

“two” depict the same numerical value, converting
“2 hours” to another unit (i.e. 120 minutes), and
applying approximation to map “120 minutes” to

“138 minutes” in the table.

In this paper, we evaluate state-of-the-art models
on various numerical reasoning types. To assess
which reasoning types are challenging for specific
models, we create a diverse and large set of numer-
ical probes and measure shifts in models’ perfor-
mance.



We organize all probed reasoning types in a hier-
archical taxonomy. Inspired by how humans under-
stand and reason with numbers, as well as previous
numerical benchmarks, we include eleven reason-
ing types across four level: representation, number
sense, manipulation, and complex reasoning (Fig-
ure 1). We apply a semi-automated approaches for
probe creation. We select tabular NLI (TNLI) as a
case study task, given three criteria: (i) numerical
data (numbers, percentages, dates, etc.) is prevalent
in tables; (ii) tables are common in real-world data
sources such as in scientific publications, database
systems and financial documents; (iii) tables as
structured data facilitate automated perturbations
to create large-scale probing sets. See Table 1 for
some examples of probes created from hypotheses
(H1, H2, H3) and the given table.

Our experiments conclude that large language
models (LLMs) like FlanT5 and GPT3.5 perform
better than other models on various numerical rea-
soning tasks. Both table-based and numerical mod-
els struggled to understand data with flipped labels
and negative values. Moreover, we observe that
some models’ performance improves significantly
for counterfactual probes (e.g. NT5 and TAPAS)
and label-flipping probes (e.g. FlanT5 zero-shot),
which indicates that models might exploit dataset
artifacts and are biased towards one label. These
findings emphasize the importance of further sys-
tematically investigating numerical reasoning capa-
bilities across various NLP models.

Our contributions are as follows:

• We introduce a taxonomy for numeri-
cal reasoning skills, including representa-
tion/number sense/manipulation skills and
complex reasoning with numbers.

• We propose a semi-automated approach to
create large-scale, numerical probe sets using
table NLI datasets.

• We evaluate three different categories of lan-
guage models (LMs) on our numerical probe
sets: (i) numerical LMs; (ii) LMs for tabular
data; and (v) zero-/few-shot LMs.

2 A Taxonomy for Numerical Reasoning

This section introduces a hierarchical taxonomy for
numerical reasoning, inspired by previous works
on numeracy in NLP (Thawani et al., 2021b; Xu
et al., 2022) and psychology (Barrouillet and Fayol,

Figure 1: Overview of numerical reasoning types.

1998a; Whyte and Bull, 2008; Bofferding, 2019).
We group numerical reasoning skills given their
complexity level in four categories: R1−R4.

2.1 Number Representation (R1)

This category includes skills for understanding the
form of numerical data. Similar to the notion of
form in language (Bender and Koller, 2020), this
is the realization of numbers in text; the way they
are represented and expressed.

Numeration. Numeration studies language
model’s understanding of representation systems
common for numbers in English: the Arabic
(“2”) and English (“two”) numeration systems.
Specifically, we probe if LMs can link between
distinct symbols used for the same number. For
example in Figure 1, H3 contains “two” as a word,
which can be also represented through “2”.

Heterogeneous Number Types. Formatted num-
bers (e.g. dates, times, and fractions) are frequently
used to convey additional information associated
with a numerical value. Numbers are formatted in a
specific way given their context and purpose, such
as expressing times and dates using full-stop (“.”),
using the “%” symbol to indicate fractions, and
different currency symbols for money (i.e. “$” or
“C”). See H1 and “Arith” in Figure 1 for example
sentences.

Negative Numbers. Early on in their develop-
ment, children develop some mental model for neg-
ative numbers (see experiments with first-graders
in Bofferding (2019)). Using negative numbers re-
quires understanding the notation of negatives (i.e.
“−” followed by a number). This also includes dis-
tinguishing between minus in subtractions (1− 3),



dates (12-12-2022), counts (i.e. from one to three)
and in negative number (−2).

2.2 Number Sense (R2)

Number sense includes reasoning skills for con-
ceptualizing number quantities and understanding
their meaning in a given context.

Scale. In everyday communication, numbers of-
ten occur together with measurement scales, e.g.
weights, distances, or heights. Understanding num-
bers in context of scales is a basis for question an-
swering applications (e.g. “We are driving 80 km h,
is this within the speed limit?”), commonsense (e.g.

“Cats weight between four and five kilograms.”) (Lin
et al., 2020), temporal reasoning (e.g. “She left
the office thirty minutes ago.”) (Zhou et al., 2020;
Zhang et al., 2020), and other applications.

Comparison. Comparing numbers allows under-
standing numerical relationships. It involves iden-
tifying which numbers are greater than, less than,
or equal to others. For example, given the table in
Figure 1, understanding “The running time of Hulk
is longer than 120 minutes.” requires comparison.

Range. The question “Was the budget of the
movie between $130 and $245.4?” about the table
in Figure 1 requires understanding number ranges.
Already at an age between two and three years,
children develop numerical abilities to understand
sequences of numbers and start reciting numbers
in an appropriate order (Fuson, 2012; Laski and
Siegler, 2007). Models’ that understand the nota-
tion of ranges, can correctly answer the question
by knowing that 137 is in the range 130− 245.4.

Approximation. Humans commonly approxi-
mate number values in everyday life (Odic and
Starr, 2018; Bonny and Lourenco, 2013). H3 in
Figure 1 requires approximation among other skills
to map “about two hours” to “138 minutes” in the
table. As a reasoning skill, it allows to make quick
estimations and metric unit conversations, and un-
derstand the approximate values of numbers with-
out calculating them explicitly.

2.3 Manipulation (R3)

Manipulation reasoning types are used to apply
basic operations on numbers such as addition. Suc-
cessful manipulation of numbers requires under-
standing their representations and meaning in the
given context (i.e. number sense).

Sorting. The sentence “Out of all Ang Lee’s di-
rected movies, ‘Hulk’ was the one with the sec-
ond highest box office income.” requires sorting
all movies according to their box office income in
order to select the one with the second highest in-
come. Sorting objects according to some criteria
is a basic milestone for developing cognitive skills.
By age 2, children already begin to understand the
concept of sorting.

Simple arithmetic. Arithmetic reasoning is the
ability of manipulating numbers with basic oper-
ations (addition, subtraction, multiplication, divi-
sion). While adults commonly retrieve results of
simple calculations from memory, children use dif-
ferent operations (Barrouillet and Fayol, 1998b).

2.4 Complex Reasoning (R4)

This category builds on all previous reasoning cat-
egories (R1−R3) to solve numerical word prob-
lems (NWP). NWP are expressed through natural
language and require multistep reasoning. Extract-
ing information from the problem description and
applying numerical/mathematical reasoning using
the retrieved information and world/commonsense
knowledge is required (Upadhyay and Chang,
2017; Amini et al., 2019; Huang et al., 2016).

3 Numerical Probing Framework

This section provides an overview of the probing
framework. We use tabular Natural Language In-
ference (TNLI) for automated probe creation.

3.1 Preliminaries

Tables for numerical probing. Tables align well
with our objectives given three key criteria: (i)
numerical data is common in tables; (ii) tables
are frequent in real-world data sources; (iii) ta-
bles, due to their structured formats, facilitate au-
tomated perturbations for probe creation. Tables’
semi-structured format, the alignments available
between table cells and column/row headers, and
the frequency of numbers, make them well suitable
for creating numerical probes automatically.

Table NLI. Given a natural language sentence as
hypothesis and a tabular premise, the aim of TNLI
is to classify if the hypothesis entails or contradicts
the table (Gupta et al., 2020). We use the table
NLI datasets TabFact (Chen et al., 2020) and In-
foTabs (Gupta et al., 2020), as well as recast the
table QA datasets TAT-QA (Zhu et al., 2021) and



TabMWP (Lu et al., 2023) to NLI (i.e. TATQA-
NLI, TabMWP-NLI). TAT-QA includes metadata,
i.e. annotations of cells and operations per correct
answer. This information is not available for any
TNLI dataset and is crucial to create probes for
specific reasoning types, e.g. arithmetic reasoning.
Table 2 provides an overview of the TNLI datasets.

Preprocessing. For each of numerical reasoning
type, we first identify base TNLI hypotheses and/or
tables in the datasets that can be used for auto-
mated probe creation. Hereby, we defined a list of
reference tokens specific for each reasoning type
and to filter relevant dataset samples. For exam-
ple, we used units of measurements such as “hour”,
“meter”, or “kilogram” filter hypotheses for scale
probes (see §4 for more details). To recast the
TAT-QA dataset, we follow the simple yet effective,
rule-based approach proposed by Demszky et al.
(2018) for QA to NLI conversion.

3.2 Probes through Structural Perturbation

Overall, we our framework includes three types of
probes, created through hypotheses perturbation
and counterfactual tables.

1. Hypothesis label-preserving probes We cre-
ate label-preserving probes changing the base hy-
pothesis such that its meaning is not changed
and the initial hypothesis label is preserved. The
probes are used to evaluate model’s ability to rea-
son and predict the correct label given semantically-
equivalent changes.

2. Hypothesis label-flipping probes To generate
label-flipping probes, we modify the base hypothe-
sis such that its meaning alters and the label of the
probe flips, e.g. from entailment to contradiction.
We aim to overcome potential dataset artefacts that
might be exploited for label prediction instead of
performing numerical reasoning.

These changes are specific to the reasoning types.
For example, to flip labels for scale probes, we
substitute measurement units for a particular scale
(e.g. “kilograms”) by another unit (e.g. “meters”)
or introduce errors in conversion of units (e.g. 3
kilometers replaced by 3, 000 meters).

3. Table Probes through Counterfactual Table
Editing We also probe with counterfactual tables
to evaluate if models rely on spurious patterns in
the premise table for label prediction. We filter the
counterfactual datasets by Jena et al. (2022) consist-

Dataset Hypotheses Tables Num cells Probes
TabFact 118,275 16,573 59.00% 214,440
InfoTabs 23,738 2,540 53.6% 19,779
TATQA-NLI 4,947 2,156 59.7% 15,139
ToTTo 1,000 892 45.7% 1,000
TabMWP 283 283 38.3% 238

Table 2: TNLI probing datasets; num cells refers to the
average ratio of numerical cells in tables.

ing of {hypothesis; original table; counterfactual
table} for numerical hypotheses.

4 Probing with TNLI Datasets

This section discussed probes in detail and how we
created them for each reasoning type from §3.1

Numeration. To study models’ understanding of
string (“two”) and numerical (e.g. “2”) number
representations, we create two types of numeration
probes. Onw converting number representations
from strings to numeric, while the second category
applies the conversion vice versa. We filter hy-
potheses with numbers written as strings (“two”)
and substitute them by their numeric counterpart
(e.g. “2”). The label-preserving probes are seman-
tically equivalent to the base hypotheses and the la-
bel (e.g. entailment) is not changed. Label-flipping
probes replace the converted number x by a random
number in the range of [x−x∗0.5;x+x∗0.5]. For
example, the numeration flipping probe of H1 (Ta-
ble 3) replaces 112 by one hundred and forty-four
and flips the label from entailment to contradiction.

Heterogeneous number types. We created het-
erogeneous probes for the following categories fre-
quent in the TNLI datasets: date formats, ordinals,
percentage, currencies, and scientific notation. To
filter base hypotheses, we applied a simple, rule-
based approach specific to each category (i.e. dates
formats, percentage, ordinals, etc.). To create label-
preserving probes we applied representation-level
changes which did not change the semantic mean-
ing. For H3, we substituted 3rd June, 1986 by an-
other English date format 03-06-1986. To flip the
label, we replaced the date in the adjusted format by
a random date, i.e. 15-01-1999. We replaced per-
centage signs by the token “percentages” and vice
versa. Similarly, ordinals written as words (first)
were exchanged by numerical representations (1st)
and the other way around. For hypotheses with
large numbers (e.g. “ $116,111,561 ” in H3), we
introduced scientific notations ($116.111561e−6).

1Find details on probe statistics in Appendix A.



Rafael Nadal
Plays Left-handed
Born 3 June 1986 (age 37)
Height 1.85 m
Turned pro 2001
Prize money US$116,111,561 (3rd all-time leader in earnings)

Base Hypothesis H1 Born in 1986 , Nadal is age 37 currently.
Numeration Probe H1 Born in nineteen eighty six, Nadal is age thirty seven currently.
Num Flip Probe H1 Born in nineteen ninety two, Nadal is age forty one currently.
Range Probe H1 Born in 1986, Nadal is age between 31-43 currently.

Base Hypothesis H2 The player’s birth date is on 3rd June, 1986 .
Heterog Probe H2 The player’s birth date is on 03-06-1986.
Heterog Flip Probe H2 The player’s birth date is on 15-01-1999.

Base Hypothesis H3 With $116,111,561 prize money, he is the 3rd highest earning all-time player.
Heterog Probe H3 With $116.111561e− 6 prize money, he is the third highest earning all-time player.
Approx Probe H3 With about $116, 000, 000 prize money, he is the 3rd highest earning all-time player.

Base Hypothesis H4 Rafael Nadal has a height of 1.85 meters.
Scale Probe H4 Rafael Nadal has a height of 185 centimeters.
Scale Flip Probe H4 Rafael Nadal has a height of 5.2 ft.

Base Hypothesis H5 After the year 2000, the player Nadal turned pro.
Comparison Probe H5 After the year 1995, the player Nadal turned pro.
Comparison Flip Probe H5 Before the year 1990, the player Nadal turned pro.

Table 3: Exemplary hypotheses and non-/flipping probes for evaluated reasoning types

Negative numbers. To create negative probes,
we replaced negative numbers −n (e.g. −3) by
string equivalents (e.g. minus 3; negative 3)
and evaluated changes in model performances on
these semantically same sentence pairs. For label-
flipping probes, we converted negative numbers
into the positive counterpart n. For example, con-
verting “The company’s monthly closing resulted
in -5 million USD.” to “The company’s monthly
closing resulted in 5 million USD.” flips the label.

Scale. We created two types of scale probes: (i)
conversion; (ii) mapping. Conversion convert
numbers within a measurement scale. For H4 in
Table 3, we converted the number and measure-
ment unit ( 1.85 meters ) to the next smaller unit
within the same scale (185 centimeters) for the
label-preserving probe. For label-flip, we intro-
duced an error in the converted number, i.e. con-
verting 1.85 meters. to 5.2 ft instead of 6.07 ft.
Mapping probes replace the number and measure-
ment unit by an equivalent (e.g. 1.85m by 1.85
meters) for label-preserving probes and a random
measurement unit e.g. 1.85m to 1.85 kilograms)
to flip the base hypotheses.

Comparison. We first created a list of sig-
nal word-pairs by prompting GPT3.5. The
list includes pairs such as {“bigger”:“smaller”},

{“taller”:“shorter”}, and {“faster”:“slower”}. Us-
ing these pairs and their synonyms, we filtered base
hypotheses and created three types of comparison
probes. First, changing the signal word with its op-
posite counterpart to flip labels (see H5 in Table 3
flipping “after” to “before”). Second, altering the
number such that the comparison and label do not
change: replacing “after 2000” by “after 1995”
(H5). Finally, we combine both prior approaches
to create label-flipping probes, e.g. “Before the
year 1990, the player Nadal turned pro.”s

Approximation. We first extract a number n
from our base hypothesis and given the value of
n, we decide the magnitude of rounding to ap-
ply. While smaller numbers are rounded to tens,
larger number are rounded to hundreds, thousands
or larger decimal points. For example, we cre-
ated the probe “With about $116, 000, 000 prize
money, he is the 3rd highest earning all-time player”
by rounding n equal $116,111,561 to “about
$116, 000, 000” (H3 in Table 3).

Range. To create range probes, we substitute
number n in the base hypothesis by an appropri-
ate range, e.g. 37 by “between 31-43” (H1). We
define the radius of the range and its boundaries
automatically given the value of n. For example,
given n < 10, we randomly sample a radius be-



tween 1 − 5. For n = 7 and a sampled radius of
2, the range will be [5 − 9]. We select decimal
boundaries if n is a decimal number.

Sorting. We utilized table columns as number
sequences to create sorting probes. We generated a
list of position indicators in number sequences (e.g.
“top”, “second” “3rd”,“biggest”, “lowest”). These
words were used to filter base hypotheses. To cre-
ate label-flipping probes, we changed the position
of the sequence to another one. For instance, we
modified “in the first quarter of 2018” to “in the
third quarter of 2018” by selecting the value from
the third row instead of the first.

Simple arithmetic. Using on TATQA-NLI its
metadata indicating the involved numbers and op-
erations for numerical reasoning, we created arith-
metic probes. We extracted probes involving addi-
tion, subtraction, multiplication, and division. Ad-
ditionally, we generated label-flipping probes by
replacing the operation output (e.g. result of sub-
traction) in the hypothesis with a different number.
In Table 1, the “Arith” probe involves calculating
the difference between the budget and box office
values to determine the correctness of 108.4. The
flipped arithmetic probe produces a close but incor-
rect subtraction output, 120.9.

Numerical word problems. We converted
TabMWP questions and answers into declarative
hypotheses. TabMWP is a dataset of free-text math
word problems that involve reasoning with tabu-
lar data. For label-flipping probes, we substituted
numbers in the hypotheses with random numbers
from the same column.

Counterfactual Table NLI Probes We filtered
the counterfactual ToTTo (Parikh et al., 2020)
dataset by Jena et al. (2022) for numerical hypothe-
sis. To create counterfactual tables, they swap two
or more table cells to modify the tables such that
the label of the respective hypothesis changes from
entailment to contradiction and vice versa.

5 Experiments and Analysis

Next, we provide an overview of all models that
were evaluated on the probes from §4. We also
discuss the obtained results and insights.

5.1 Probed Models

We use state-of-the-art models which are divers
in terms of architecture, size, and training setup,

grouped into three categories:

(C1) Numerical LMs. This category includes
LMs adapted for numerical reasoning. LUNA (Han
et al., 2022) is a recent transformer-based model
with an adapted tokenization approach for numbers.
The model encodes numbers as single tokens (e.g.
3, 201) instead of splitting them down into sub-
words or binned tokens. NT5 (Yang et al., 2021)
is a variation of the T5 model. It has been mod-
ified for numerical reasoning through additional
pretraining objectives and fine-tuning using numer-
ical datasets. PASTA (Gu et al., 2022) is based on
DeBERTa and is pretrained with objectives that use
table-based numeric operations.

(C2) LMs for tabular reasoning.
TAPAS (Herzig et al., 2020) extends the BERT
encoder with table-specific embeddings. We
used a TAPAS model variant pretrained through
intermediate pretraining on synthetic and counter-
factual data (Eisenschlos et al., 2020). Previous
works have also shown the success of the *BERT
family of models on tabular NLI tasks (Herzig
et al., 2020; Yin et al., 2020; Neeraja et al.,
2021; Shankarampeta et al., 2022). Tables are
either linearized or preprocessed into sentences
or structured formats. These transformed tables
are then used as input to the models. We used
a DeBERTa model (He et al., 2021) trained on
multiple NLI datasets.

(C3) Large LMs. For few-/zero-shot evalua-
tion, we selected FlanT5 and GPT3.5. We probed
FlanT5 in both a few-shot and zero-shot setting.
However, we limited the probing on GPT3.5 to few-
shot due to its accessibility through a paid API.2

5.2 Training and Evaluation

To finetune models, we used the base hypotheses of
the training datasets (e.g. InfoTabs) and evaluated
models only on probes created with their testsets.
The few-shot models were prompted with 2-shot
extrapolation. We evaluated all models in a 3-step
process: (1) evaluation of base hypotheses H; (2)
evaluation of probes P , created using H; (3) calcu-
lating changes in model performance by comparing
accuracy of P to H . As our TNLI task is a binary
classification task, we used accuracy for evaluation.

2Unlike GPT3.5, FlanT5 is available free of charge.



Model Table Specific Numerical Specific Large LMs
Reasoning Type TAPAS DeBERTa NT5 LUNA PASTA FlanT5 (few) FlanT5 (zero) GPT3.5 (few)
Numeration -0.32 -1.82 -4.18 -5.22 -7.7 1.28 -8.84 -1.94
Heterogeneous - 4.03 -2.36 -3 -10.09 -7.76 0.34 -5.49 -3.86
Negative Numbers - 46.11 - 13.77 -94.48 -75.55 -10.68 19.21 42.3 5.58
Numeration Flipping -38.87 4.09 -48.53 -71.35 -25.85 -78.37 33.38 -13.5
Heterogeneous Flipping -9.57 8.53 -1.97 -43.48 -23.59 -53.44 86.6 -6.52
Negative Numbers Flipping -64.81 - 41.56 -17.87 76.85 -70.58 - 83.92 173.14 79.27
Scale 0.03 - 6.25 0 -11.43 -1.56 - 9.45 -7.05 2.21
Comparison - 21.8 - 18.18 - 29.19 - 30 - 35.11 29.38 140.82 65.52
Approximation - 5.61 - 6.65 - 9.55 - 7.67 - 27.44 -9.66 -12.94 - 6.45
Range - 18.89 - 33.77 -20.43 -86.77 -84.66 22.44 178.13 44.82
Scale Flipping - 23.73 -64.58 0 - 68.44 -51.66 -69.56 93.77 -9.6
Comparison Number Flipping 57.67 -19.36 -29.62 -0.28 -19.10 - 8.47 -40.75 21.6
Simple Arithmetic Flipping - 58.62 -24.96 -27.1 7.07 -49.06 -71.53 265.07 15.3
Sorting Flipping -34.8 28.66 -22.6 54.31 -4.9 -86.67 25.0 -36.89
Complex Reasoning 63.37 6.93 -3.22 41.41 -50.84 -89.77 -40 -67.66
Counterfactual 44.5 55.54 159.30 0.98 -6.09 61.5 12.23 -5.03

Table 4: Probing results given as accuracy difference (in %) between base hypotheses and probes.

5.3 Results and Discussion

Table 4 gives on overview of all probing results.
If available, we separately list scores for flipped
probes, e.g. numeration and numeration flipping.

(Q1) Do any models excel in all numerical
reasoning types? While there is not one best-
performing model across all reasoning types and
different models struggle with different types,
FlanT5 and GPT3.5 show overall good numerical
reasoning skills. While GPT3.5 performance drops
by −67.66% for complex reasoning probes, the
model’s average accuracy change is around 5.0%
for other types. This can be related to (1) mod-
els pretraining data and (2) training on chain-of-
thought reasoning tasks (Wei et al., 2022). GPT3.5
was trained on more than 300 TB data Common
Crawl, allowing the model to memorize much more
numerical data than other probed models. In com-
parison, DeBERTa was trained on only 78GB
of data (He et al., 2021). Interesting is also the
performance difference between NT5 and FlanT5.
Both models use the T5 model as the base model.
FlanT5 was finetuned using instructions and chain-
of-thought reasoning, and outperforms NT5.

(Q2) How do models perform on different types
of numerical reasoning? Representation. In
Table 4, comparing representation probes (rows
2−7), TAPAS and few-shot FlanT5 perform best on
non-flipping numeration probes. FlanT5 (few) also
performs well on heterogeneous probes, followed
by DeBERTa (−2.4%) and NT5 (−3%). TAPAS,
NT5, and LUNA show significant performance
drops (between −38.87 and −71.35) on negative
number probes. This could be because the models
exploit correlations between the “−” sign and la-

bels for predicting base hypotheses. Interestingly,
few- and zero-shot models like FlanT5 and GPT3.5
show improvements on negative number probes.
This may be because the models understand “mi-
nus 22” as a negative number but not “−22.” We
discuss label-flipping probes for numeration below.

Number sense. Comparing model performance
on number sense probes (rows 8 − 13), we ob-
serve different patterns for fine-tuned models and
few-/zero-shot models. Fine-tuned models struggle
especially with comparison probes, with a −29%
average performance drop. Scale probes show a
−3.4% decrease, while approximation probes re-
port a −13.3% decrease. In contrast, FlanT5 and
GPT3.5 perform better on comparison and range
probes, sometimes surpassing predictions on the
base hypotheses. All models demonstrate lower
performance on approximation probes compared
to the base hypotheses, with PASTA showing the
largest decrease of −27.44%.

Manipulation and Complex Reasoning. Fine-
tuned models exhibit an average accuracy drop of
−23.5%, except for LUNA which shows perfor-
mance increases. In contrast, few-/zero-shot mod-
els slightly improve performance by 9.5%. Unlike
most other reasoning types, fine-tuned models out-
perform few-/zero-shot models on complex reason-
ing probes. TAPAS achieves the highest accuracy,
followed by LUNA and DeBERTa. FlanT5 and
GPT3.5 demonstrate the largest performance drops
on complex reasoning probes.

(Q3) Do models perform similarly for flipped
and non-flipped probes? We observe higher
performance drops for label-flipping probes com-
pared to non-flipping probes across models. Mod-
els that struggle with flipping probes but perform



well on their non-flipping counterparts indicate
a reliance on spurious patterns for label predic-
tion. For example, TAPAS experiences an accu-
racy drop of −2.28% on numeration probes, but a
drop of −45.98% on numeration flipping probes.
Similarly, DeBERTa performs comparatively well
on scale probes (−6.25%) compared to scale flip-
ping probes (−64.58%). Minor performance drops
are found across models for numeration, heteroge-
neous, and scale probes, suggesting good reasoning
skills of models in these categories. Additionally,
DeBERTa exhibits robust performance on number
flipping probes for sorting and FlanT5 on negative
numbers, as well as arithmetic probes.

(Q4) Are numerical and table-specific models
better for numerical tabular reasoning?

Numerical models. LUNA, a transformer
model that uses a specific tokenization method
for numbers, performs similarly to other models
on many reasoning types. The only reasoning
type where LUNA outperforms others is compari-
son flipping probes, with a small improvement of
0.28%. PASTA is a DeBERTa-based model trained
on numerical data and pretraining objectives. How-
ever, compared to DeBERTa, it only performs bet-
ter on negative number and scale probes.

Table-based models. Comparing non-flipping
and flipping probing results for TAPAS, we ob-
serve huge accuracy decreases for label flipping
cases. For example, for numeration non-flipping
probes, TAPAS shows a small decrease (−2.28%).
However, when the labels are flipped, the model
misclassifies almost half of these probes, resulting
in a large accuracy drop of 45.98%. Similarly, for
scale probes, the accuracy of non-flipping probes
is 2.33%, but it decreases to −31.09% for flipped
probes. Compared to other models, TAPAS per-
forms well on heterogeneous probes, non-flipping
scale probes, and complex reasoning probes.

6 Related Work

Numeracy Taxonomies in NLP Prior works
have introduced different taxonomies to organise
numeracy in NLP research. Thawani et al. (2021b)
discuss number representations in NLP systems
and introduce a taxonomy based on on granular-
ity (exact vs. approximate) and units (abstract vs.
grounded) of numbers in text. Xu et al. (2022)
focus on the robustness of NLP models in han-
dling numerical data and organize their numeracy
probing tasks in two broad categories: (i) number

detection and extraction and (ii) semantic parsing
of numbers. For (i), they evaluate number map-
ping between numerals and numbers as words and
consider float numbers while studying number de-
tection. In category (ii), they concentrate on arith-
metic reasoning. The DROP benchmark (Dua et al.,
2019) requires various arithmetic (e.g. substraction,
count, sort) and NLU skills (e.g coreference reso-
lution) to answer questions over paragraphs.

Language Model / Numerical Skills Var-
ious studies have evaluated LMs’ numeri-
cal skills in recent years. Earlier works
probed word embeddings for numeration (e.g.
4=four) (Naik et al., 2019), comparison (e.g.
3 < 4) (Wallace et al., 2019), scale (Zhang
et al., 2020), and superlatives (Wallace et al.,
2019). More recent works evaluate LMs on out-of-
distribution numbers (Kim et al., 2021), numera-
tion/magnitude/sorting/superlatives (Pal and Baral,
2021), and arithmetic (Muffo et al., 2022).

Numerically-tuned Language Models Various
numerical LMs have been developed in recent
times. Geva et al. (2020) and Liang et al. (2022) in-
ject numerical skills into BERT through numerical
pretraining objectives. PASTA (Gu et al., 2022) and
NT5 (Yang et al., 2021), which are based on De-
BERTa and T5 respectively, fall into the same cate-
gory of models. Another line of work adjusts LMs’
architectures for numerical reasoning through nu-
merical tokenization (Han et al., 2022) or addi-
tional, numerical embeddings (Jin et al., 2021).

Augmenting LMs with external Calculators
todo

Systematic Probes for Tables Tables have been
utilized previously used to create probes for ta-
ble grounding (Gupta et al., 2022b) or recasting
non-NLI datasets (e.g. question-answering) to
NLI (Jena et al., 2022). Unlike unstructured text
data, tables have a natural structure that allows cre-
ating controlled experiments more easily (Gupta
et al., 2022a). We drew inspiration from prior tab-
ular probing approaches and extended them for
automating probing of numerical tabular data. Jena
et al. (2022) systematically applying adjustments
to table QA datasets to generate NLI data. While
we follow a similar approach for probe creation,
they focus on transforming QA transformation for
data creation, emphasizing the end-result (i.e. the
NLI data), rather than the reasoning behind the



answers.

Comparison to Prior Work All the above men-
tioned prior works on numerical reasoning have
provided motivation for our research. However,
their evaluations have focused on a narrow range
of reasoning types and models. Most study only
concentrated on one specific model such as T5 (Pal
and Baral, 2021), GPT3 (Muffo et al., 2022), or
BERT (Park et al., 2022). In contrast, our frame-
work provides a comprehensive evaluation of nu-
merical reasoning skills. We cover a wide spectrum
of complexity levels, ranging from representation
to complex reasoning. Moreover, we assess a vari-
ety of models with diverse architectures, sizes, and
training settings for numerical reasoning.

7 Conclusion

This paper presents a framework for probing lan-
guage models’ numerical reasoning skills. We or-
ganise skills in a taxonomy and generate large-scale
sets of probes covering more then ten reasoning
types. Using table NLI as a case study, we evaluate
the numerical reasoning abilities of seven models.
These models belong to the categories numerical
LMs, tabular LMs, and few-/zero-shot LLMs. We
discuss reasoning types that prove challenging for
the probed models and explore promising direc-
tions for future research.

Limitations

This work proposes a taxonomy and framework
to probe numerical reasoning skills in LMs. It in-
volves the creation of large-scale probing sets using
an automated approach. However, the evaluation of
this approach is currently limited to the task of table
NLI. For future research, it is interesting to extend
this to include additional tasks and datasets. This
extension serves two purposes: first, it allows eval-
uating a more diverse range of datasets. Second, it
enables including challenges specific to other tasks.

In this paper, the evaluation of most reasoning
types primarily involves structural changes at the
hypotheses level. While we include counterfac-
tual table probes, they are limited to one dataset
and perturbations method only. Further research is
needed to study models’ performance on numeri-
cal data in the premise data. Therefore, we need
table-based probes for all reasoning types of the
proposed taxonomy.

Ethics Statement

In this paper, we study the numerical reasoning
skills of different LMs. However, to deploy these
systems in real-world applications, further studies
and evaluations specific to the intended use cases
are required. In order to support future research,
we plan to release all the scripts and resources used
for probe creation and model evaluation. This will
facilitate and encourage further research in this
field.
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A Probe Statistics

Reasoning Type Count
Word Problems 238
Sorting 379
Counterfactual 1,000
Currency 1,014
Negative 3,316
Range 4,208
Scientific notation 6,274
Arithmetic 8,082
Ordinal 10,569
Percentage 16,851
Date 18,642
Approximation 20,440
Comparison 30,763
Numeration 166,319
Total 288,095
Flipped probes 77,687

Table 5: Breakdown of probes per reasoning type.

Table 2 gives an overview of probes per dataset.
Most probes (i.e. 214, 440) are created from Tab-
Fact hypotheses as this is also the biggest dataset
available, followed by InfoTabs (19, 779). Table 5
provides a breakdown of probes per reasoning type.
In total, we have 286, 857 probes, of which 76, 404
are label-flipping probes.

B Insights

Main Insights. We investigated the language mod-
els and found that LLMs like FlanT5 and GPT3.5
perform better than other models on various numer-
ical reasoning tasks. When the labels are switched
around and when dealing with negative values, we
found that both table-based and numerical models
had difficulty comprehending the data. In contrast,
DeBERTa performs relatively well compared to
models like LUNA and PASTA, which are tuned
for improved numerical reasoning skills.

In the ideal scenario with counterfactual tables,
the models’ performance should be similar to the
performance on the original tables. However, we
observed that TAPAS and DeBERTa’s performance
improved significantly, which leads to the conclu-
sion that models are biased toward one label.

Overall no language model excels in all the nu-
merical reasoning tasks. Surprisingly, models per-
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form relatively well in complex tasks like Numeri-
cal Word Problems but struggle at simple reasoning
tasks like numeration and comparison.


